

JUSTIN J FREEMAN

SELECTED WORKS PORTFOLIO

CONTENTS

01

GROVECREST
ELEMENTARY
SCHOOL

02

CENTRAL
ELEMENTARY
SCHOOL

03

BEN LOMOND
HIGH SCHOOL

04

BYU, COLLEGE
OF ENGINEERING

05

DOTERRA
OPERATIONS
BUILDING

06


ROME ITALY
LDS TEMPLE

07

ROME STUDY
ABROAD CASE
STUDY PROJECT

08

NSAD THESIS
PROJECT

01

Project Title: Grovecrest Elementary School

Project Typology: Education

Location: Pleasant Grove, Utah

Project Year: 2017

Description: My involvement with this project was developing construction documents and collaborating with the project team through various tasks such as interior elevations, site plan, and annotated plans.

Grovecrest Elementary is a two-story K-6 prototype elementary school built to replace an existing elementary in the hills of Pleasant Grove, Utah. The 70,000 square foot prototype, with a \$14.2 million construction cost, was designed to accommodate 780 students, housing the existing school staff and students with additional space for the areas growing community.

The building's exterior finishes of brick masonry, metal panel accents and aluminum storefront glazing, were selected to complement the fabric of the surrounding environment. The use of brick will offer quality and durability for a facility designed to last 70 to 80 years.

(Image courtesy of VCBO Architecture)

02

Project Title: Central Elementary School, Space Center & Planetarium

Project Typology: Education

Location: Pleasant Grove, Utah

Project Year: 2020

Description: I successfully served as a Designer 1 team member from the beginning of the project in concept design of simulator and planetarium options of the Space Center. I helped lead the team through developing construction documents for the replacement elementary school of 109,000 total gross square feet with the 40 foot planetarium and space center with 6 simulators.

The space center in the district is the opportunity to use simulated learning to be able to captivate and inspire students as they are put into a starship looking scenario.

From the exterior, the building materials feature a curtain wall system to display the space center and planetarium complemented with concrete tilt-up walls, brick masonry and metal panel accents.

(Rendering courtesy of VCBO Architecture)

03

Project Title: Ben Lomond High School, Athletic Center

Project Typology: Education

Location: Ogden, Utah

Project Year: 2020

Description: I effectively worked as a team designer assisting with the building's exterior design in Sketchup and Revit. I successfully developed construction documents within the team, leading tasks of site work for new athletic fields and site buildings. I was also instrumental in developing building and wall sections, exterior and interior elevations and plans.

The new athletic center of 104,000 gross square feet will include 3 full size and alternate courts and bleachers for basketball, volleyball and tennis. It will also include a full indoor track, weight room, athletic training, locker rooms and classrooms. The building's exterior will be constructed on concrete tilt-up walls, brick masonry, perforated metal screen walls, aluminum storefront glazing, and metal panel to accent and wrap canopies of the building.

(Rendering courtesy of VCBO Architecture)

04

Project Title: Ira A. Fulton College of Engineering, Brigham Young University

Project Typology: Higher Education

Location: Provo, Utah

Project Year: 2018

Description: I effectively developed construction documents within the team by leading the tasks of curtain wall, storefront glazing elevations and detailing and interior elevations.

The building is a five story structure that contains classrooms, lab spaces, mentoring spaces, team rooms, and offices for the college and 4 departments with a construction cost of \$64.3 million. The exterior is aluminum panel, curtain wall and brick clad and is 200,000 gross square feet. The laboratory spaces within the new facility are designed to be flexible and adaptable to meet the ever-changing research needs, the creation of shared, open facilities that promote interaction among students and faculty as well as multidisciplinary collaboration. The wide variety of engineering labs in the building include spaces for designing engines, rockets, drones, robotics, and bio-chemical research areas to name a few. The laboratories also integrate state-of-the-art safety protection, permit more students to have a mentored research experience, accommodate growth in research programs and industry partnerships. A large event venue that can host interactive presentations for 200 people, scholarly lectures, poster sessions, or other meetings with outside visitors will be a huge asset to the mission of the College.

(Image courtesy of VCBO Architecture)

05

Project Title: doTerra Operations Building

Project Typology: Office

Location: Pleasant Grove, Utah

Project Year: 2018

Description: I successfully served as the Project Coordinator and Revit Manager of developing schematic plans and construction documents of the doTerra Operations Building. I assisted in leading the team through assigned tasks and deadline through each bid package. I gained experience with BIM coordination through Navisworks and construction administration from reviewing shop drawings and submittals, answering RFI's, attending OAC meetings, completing field reports, and punch listing,

The Operations Building is 120,000 gross square feet on level 1 for warehouse storage areas and manufacturing spaces. The second level mezzanine is 45,000 gross square feet of office space, lab areas, and storage. In addition to expanding the bottling plant, doTERRA will now have greater capability to receive raw oils from all over the world to sample, test, and prepare these oils to be used in the blending process. The "blending" areas have several rooms for blending together the oils prior to the bottling process, two of these rooms have large 3,000 gallon stainless steel mixing tanks that will allow doTERRA to provide high volume blending keeping up and getting ahead of the high demand. All manufacturing spaces are ISO 8 clean rooms and designed to follow TGA guidelines for manufacturing. The building provides office space for 200 employees in the manufacturing and operations departments including meeting space, training rooms, breakrooms etc. Also we are providing a new quality control lab of approximately 1,500 square feet where oils will be tested by a third party laboratory for compliance with doTERRA standards.

(Image courtesy of Justin Freeman, site visit)

06

Project Title: Rome Italy LDS Temple

Project Typology: Religious

Location: Rome, Italy

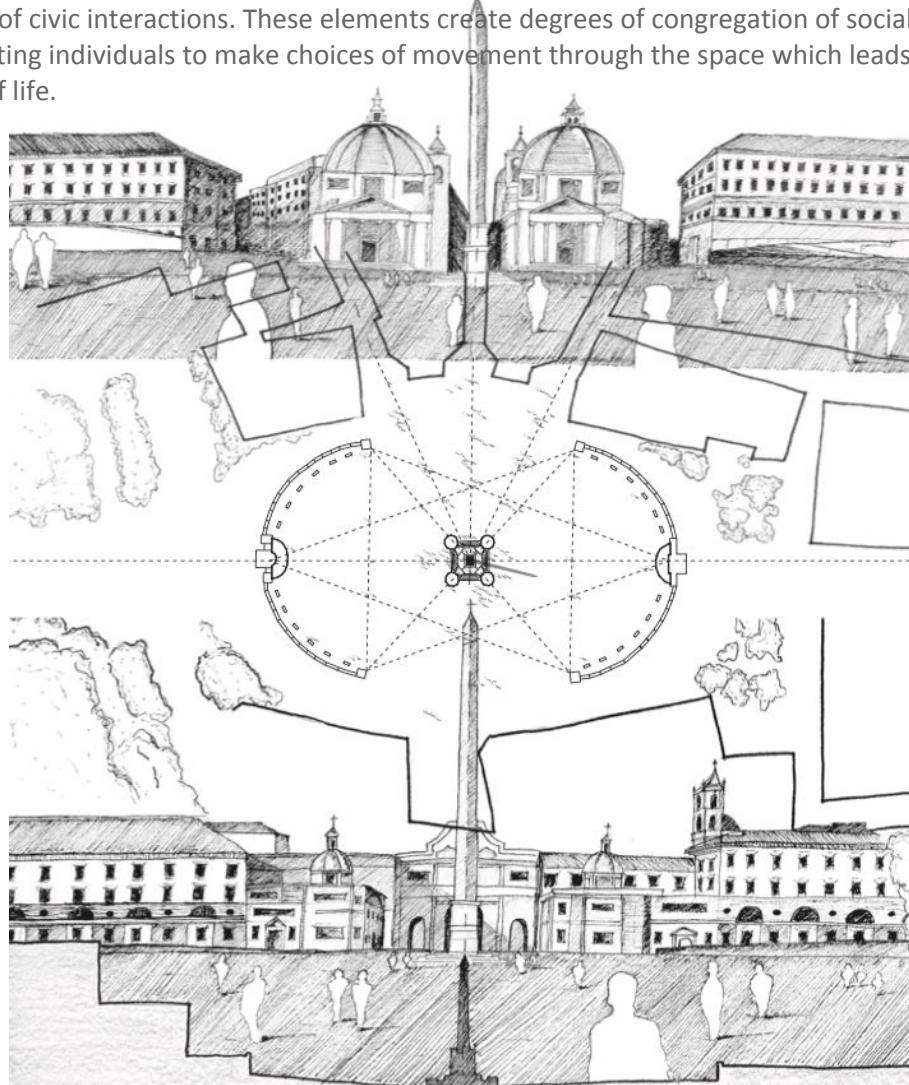
Project Year: 2019

Description: I effectively served as the Project Coordinator and Revit Manager through construction administration to completion. I was instrumental in updating and revising construction documents for 6 volume sets of the project. I was responsible for revising drawings and answering RFI's and sending out ASI's and change orders, and served for 3 years on the team till completion.

The 15-acre Temple project site includes the Temple, Visitor Center, Patron Housing, Chapel, piazza, gardens, fountains and site support buildings. The Temple is a 3-Story concrete structure with a full basement, approximately 3800 square meters. The exterior finish is Italian granite and art glass windows. The interior finishes are of Venetian plaster, limestone walls and marble floor finishes. The Patron Housing is a 2-Story concrete structure and Italian travertine and brick clad exterior, approximately 5700 square meters and has 15 apartments, 22-4 bed sleeping accommodations and eating accommodations. The Visitor Center is a 2-Story steel structure clad with Italian travertine and brick, is approximately 2500 square meter and has a visitor/museum facility on main level and a genealogical research facility on the second level. The Chapel is a steel structure clad with Italian travertine and brick and is 1,500 square meter utilized for church service, meetings and activities.

(Image courtesy of the Church of Jesus Christ of Latter-day Saints)

07


Project Title: Piazza del Popolo, Challenging the Elements of Civic Spaces

Project Typology: Rome Study Abroad Case Study

Location: Rome, Italy

Project Year: 2014

Description: The Piazza del Popolo is the encapsulation for moments in time and captures moments of decision. It is the gathering, collective and social interactive space of the city but also the gateway and junction point. The piazza is the generator of attraction designed off the neoclassical style of symmetry. The piazza is able to be perceived all at once with a continuous accessible plan, open to the stages of nature, landscaping and fountains. The Piazza del Popolo generates civic space through architectural elements of the sloping cobblestone landscape towards the obelisk, the central axis of the piazza. Shading of the piazza and sun exposure are elements that attract the public to specific parts of the piazza determined by the conditions. Public seating provide opportunities for rest and observation of architecture or spontaneous human activity. Strong enclosure and wall continuity are important to a piazza as an outdoor room or large courtyard surrounded on all sides by buildings that are in connection to the piazza and provides pedestrian sized pathways. Another element that generates civic space in the piazza is fountains that mark arrival points or glorify a person or place. Some water fountains are potable which promotes public health to the city and others are for decoration, entertainment or recreation. The challenge of the project is dismantling the present conditions of the piazza to project the future of civic interactions. These elements create degrees of congregation of social interaction of space by drawing and directing individuals to make choices of movement through the space which leads to spontaneous human activity, full of life.

(Drawings by
Justin Freeman)

08

Project Title: PerFORMative REaction

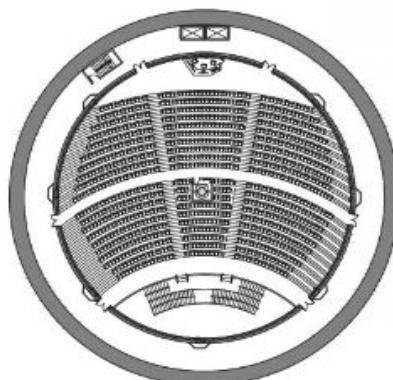
Project Typology: Thesis Project - Adaptive reuse

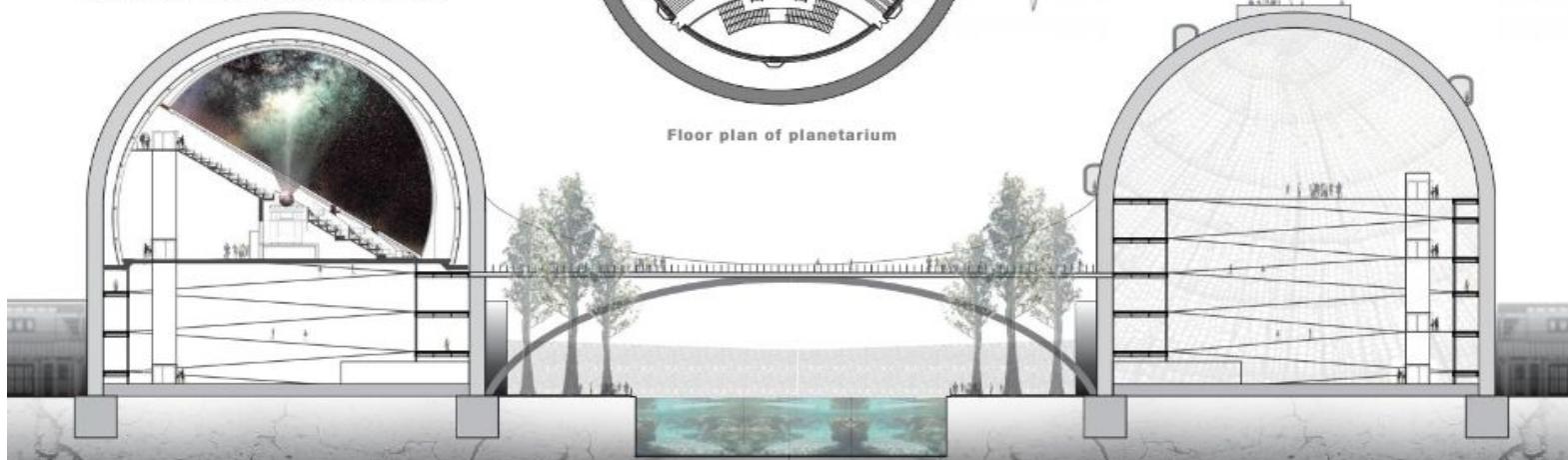
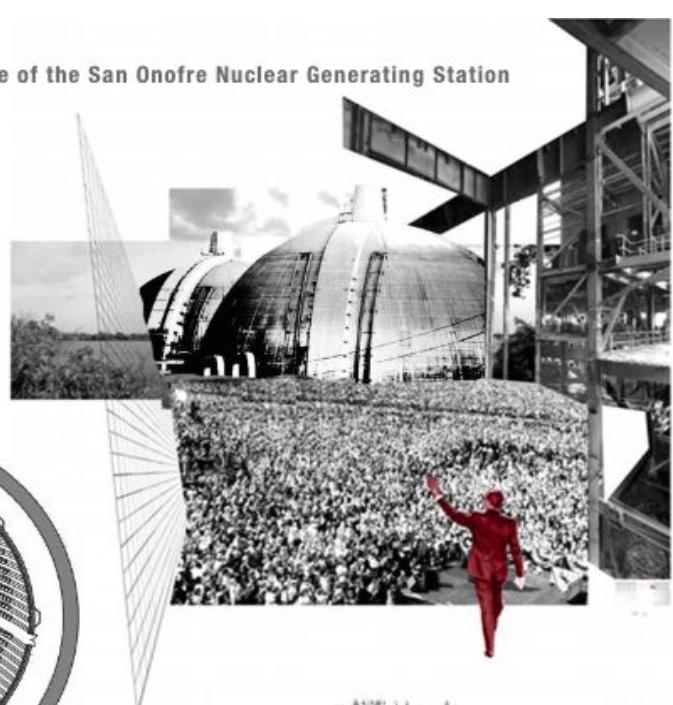
Location: NewSchool of Architecture & Design San Diego, CA - **Project Location:** S.O.N.G.S. San Onofre, CA

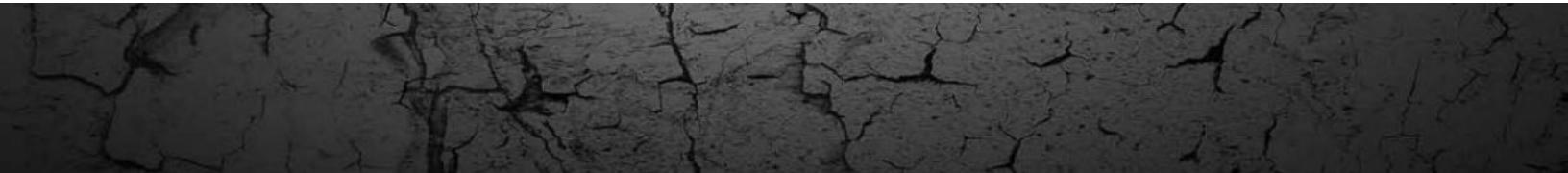
Project Year: 2015

Description: For my thesis project I proposed the redevelopment and reuse of the site and dome structures of the San Onofre Nuclear Generating Station after decommission. One of the main goals was to avoid any occurrence of a brownfield that would infest the area and be a tragic loss of coastal development land. There is an incredible disconnect in this area between the natural preserve, the public and the isolated and solitary site. The domes are a strong iconic landmark to the area and demand to remain to serve the public in a new function by giving value back to the site connecting with nature. Through extensive research, tours, county meetings and design development the final design was a Public Discovery Center of Nature & Science including a master plan of exhibits, planetarium, amphitheater venue, tidal pool aquarium, theaters, restaurants, Ocean Research Facility, new access to the beach and connecting the coastline trail.

PerFORMative REaction


The adaptive reuse of the San Onofre Nuclear Generating Station



The dome is a structure of tectonic value that exhibits true form unlike any other type of architecture. It will perform many functions in its lifespan and was constructed to age and adapt to circumstances and typologies. The dome is an icon and landmark to any area in which it exists. It will become part of urban history and give memory to its society. This thesis is an investigation of repurposing quality iconic structures, such as the dome, in order to prolong and improve the lifespan and usage of historic landmarks, preventing them from becoming desolate and deserted brownfields.



Topography model representing the site

Floor plan of planetarium

JUSTIN J FREEMAN

805.478.1673 JJFREEMAN4@GMAIL.COM